Idioblasts and peltate hairs as distribution networks for water absorbed by xerophilous leaves

Juan M. Losada1,2,3 | Miriam Díaz4 | N. Michele Holbrook2,3

1Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Málaga, Spain
2Department of Organismic and Evolutionary Biology, Cambridge, Massachusetts
3Arnold Arboretum of Harvard University, Boston, Massachusetts
4Centro de Investigaciones en Ecología y Zonas Áridas (CIEZA), Universidad Nacional Experimental Francisco de Miranda, Coro, Venezuela

Abstract

Capparis odoratissima is a tree species native to semi-arid environments of South America where low soil water availability coexists with frequent night-time fog. A previous study showed that water applied to leaf surfaces enhanced leaf hydration, photosynthesis and growth, but the mechanisms of foliar water uptake are unknown. Here, we combine detailed anatomical evaluations with water and dye uptake experiments in the laboratory, and use immunolocalization of pectin and arabinogalactan protein epitopes to characterize water uptake pathways in leaves. Abaxially, the leaves of *C. odoratissima* are covered with peltate hairs, while the adaxial surfaces are glabrous. Both surfaces are able to absorb condensed water, but the abaxial surface has higher rates of water uptake. Thousands of idioblasts per cm², a higher density than stomata, connect the adaxial leaf surface and the abaxial peltate hairs, both of which contain hygroscopic substances such as arabinogalactan proteins and pectins. The highly specialized anatomy of the leaves of *C. odoratissima* fulfils the dual function of minimizing water loss when stomata are closed, while maintaining the ability to absorb liquid water. Cell-wall related hygroscopic compounds in the peltate hairs and idioblasts create a network of microchannels that maintain leaf hydration and promote water uptake.

KEYWORDS

arabinogalactan proteins (AGPs), foliar water uptake, idioblasts, pectins, peltate hairs, sclerenchyma

1 | INTRODUCTION

Water-energy dynamics drive global patterns of plant diversity (Kreft & Jetz, 2007), with the predicted global increase of aridity likely to make plants more vulnerable to a lack of water in the soil (Choat et al., 2012; Olson et al., 2018). In arid and semi-arid environments, plant productivity is compromised due to prolonged soil drought. Xerophilous plants that thrive in these ecosystems exhibit anatomical adaptations that reduce rates of water loss, such as smaller leaves, lower stomata index and impermeable coating structures, like cuticles (see Shields, 1950). Surprisingly, some of the structures that prevent evaporative water loss may also facilitate the uptake of atmospheric water condensed on the leaf surface, decoupling the water status of the canopy from soil water availability (Benzing, Seemann, & Renfrow, 1978; Gouvra & Grammatikopoulos, 2003; Schreel et al., 2020; Schreel & Steppe, 2019; Schreel, van de Wal, Hervé-Fernandez, Boeckx, & Steppe, 2019; Schreel, von der Crone, Kangur, & Steppe, 2020).

Foliar water uptake is a widespread phenomenon of vascular plants, known for three centuries, and evaluated in at least 53 plant families (Dawson & Goldsmith, 2018). Foliar water uptake has direct consequences on plant function, relaxing tension in the water column of the xylem, enhancing turgor-driven growth and increasing the productivity of agricultural and natural ecosystems (Aguirre-Gutiérrez et al., 2019; Mayr et al., 2014; Steppe et al., 2018). The key conditions for foliar water uptake are met in fog-dominated environments...
where high atmospheric humidity enhances night-time dew formation on leaf surfaces, thus increasing the possibility of foliar water absorption. Indeed, studies in montane cloud forests of Brazil (Eller, Lima, & Oliveira, 2016), coastal California redwood forests in the USA (Burgess & Dawson, 2004) and cloud forests in Mexico (Gotsch et al., 2014) have demonstrated that foliar water uptake has an important impact on plant functioning, especially during dry periods (Breshears et al., 2008). Foliar uptake in semi-arid areas of the tropics is less studied, despite reports that it can enhance biomass productivity (Díaz & Granadillo, 2005; Limm, Simonin, Bothman, & Dawson, 2009).

Foliar water uptake occurs through a variety of mechanisms and pathways. Some species absorb water through the natural leaf openings, such as stomata (Berry, White, & Smith, 2014; Burkhardt, Basi, Pariyar, & Hunsche, 2012) or hydathodes (Boanares et al., 2019; Martin & von Willert, 2000). Other structures that are supposedly impermeable to water may participate in water uptake, including cuticles (Fernández et al., 2017; Schuster, Burghardt, & Riederer, 2017; Vaadia & Waisel, 1963; Yates & Hutley, 1995) and trichomes (Franke, 1967; Benzing et al., 1978; reviewed by Berry, Emery, Gotsch, & Goldsmith, 2019). While the use of these wall-thickened, sealing structures appears as a good strategy to capture atmospheric water condensed on leaf surfaces, demonstration of their hygroscopic capacity requires a careful examination of their cell-wall biochemistry, so far lacking for most plant species. Early work in this area showed that the absorptive capacity of leaves is related to the presence of polysaccharides under the cuticle (Kerstiens, 1996). However, the role of ubiquitous compounds of the cell walls, such as pectins and glyco-proteins, on foliar water uptake has received little attention (Boanares et al., 2018). It is not known whether trichomes or sclerenchymatous structures display such hygroscopic compounds.

This knowledge gap is particularly severe for xerophilous species, which have leaves with abundant sclerenchymatous tissues, such as idioblasts, highly specialized structures that are understudied from a functional perspective. Idioblasts (Schwendener, 1874) are thick-walled cells typically buried in the mesophyll of vascular plants (Bailey & Nast, 1945; Tomlinson & Fisher, 2005), and commonly found in the leaves of xerophilous species (Foster, 1956; Heide-Jorgensen, 1990). Traditionally, idioblasts have been explored from the perspective of morphology, ontogeny and taxonomic values (Bloch, 1946; Foster, 1944, 1945a, 1945b, 1955a, 1955b; Rao & Mody, 1961). However, important functions attributed to idioblasts are typically inferred from their putative stiffness, such as support and defence (Foster, 1947; Rao & Sharma, 1968; Tucker, 1964), or from their topology, such as a possible role in leaf capacitance (Heide-Jorgensen, 1990) or serving as light guides (Karabourniotis, 1998). The diverse array of anatomies of xerophilous species is exemplified in the genus Capparis (Gan et al., 2013; Rao & Mody, 1961). *Capparis odoratissima* is native to the semi-arid tropical environments of the South American continent with a remarkable capacity to produce more biomass in response to canopy irrigation than to surface irrigation at low soil water availability, compared with other species living in the same environment (Díaz & Granadillo, 2005), likely through foliar water uptake as suggested by the authors. However, the mechanism of foliar water uptake in this species is unknown.

C. odoratissima is the most conspicuous evergreen species in xerophytic forests of north-western Venezuela. We focused on this regionally important species with the goal of understanding the relationship between anatomy and function in this extreme ecosystem. We show that the leaves of *C. odoratissima* are highly specialized structures that perform a dual function: minimizing water loss when dry and absorbing water when wet. We examine how an intricate network of hygroscopic pathways within the mesophyll enhances water uptake, thus maintaining leaf hydration upon water condensation on the leaf surface.

2 | MATERIALS AND METHODS

2.1 | Plant material

Leaf material was obtained from *Capparis odoratissima* trees growing near the University of Francisco de Miranda in the state of Falcón, Venezuela. Cut branches with leaves attached were transported to the laboratory (approximately 2–3 days) in tightly sealed plastic bags containing humidified paper to avoid evaporation.

2.2 | Evaluation of the external leaf morphology

Five-to-six fully expanded leaves were scanned (along with a scale) using a CANON CanoScan LiDE 400 scanner, and leaf areas calculated using Image J1.51d software (National Institutes of Health, Bethesda, MD, USA). These same leaves were then used to photograph the details of both adaxial and abaxial surfaces with a Zeiss Discovery v12 Dissecting microscope (objective 0.63x PanApo). Adaxially, the idioblast tips were easily visualized by their translucency, and, abaxially, the peltate hairs were counted using their central parts as references. Both idioblasts and peltate hairs were counted in 1 mm² areas at five positions on each leaf surface. To count the number of stomata, five leaves were fixed in FAA (formalin: acetic acid, Johansen, 1940), washed three times in distilled water for 1 h each, stained with Feulgen reaction (modified from Barrell & Grossniklaus, 2005). Then, the leaves were cleared with a solution containing ethanol:benzyol benzoate 3.1 (v/v) for 6 h, ethanol:benzyol benzoate 1:3 (v/v) and finally benzyol benzoated:diethyl phthalate 1:1 (v/v) for several days (Crane & Carman, 1987). Following the removal of the peltate hairs, 1 mm² samples were imaged with a Zeiss LSM700 Confocal Microscope connected to an AxioCam 512 camera and Zen Blue 2.3 software, using a 20x/0.8 M27 Plan-Apochromat objective. Note that the area occupied by the rounded base of the peltate hairs (3.45%) never contained stomata, and hence was subtracted from the total leaf area to get a more accurate estimate of stomatal density.

(Tognetti, 2015; Weathers, Ponette-González, & Dawson, 2019),
2.3 Evaluation of the internal leaf anatomy: Idioblast characterization

To better understand the structure of the idioblasts in the mesophyll, hand-cut transverse thin sections (perpendicular to the leaf surface) were made and stained with a solution of 0.01% w/v calcifluor white in 10 mM CHES buffer with 100 mM KCl (pH = 10) (Hughes & McCully, 1975), to identify cellulose-rich walls, and then with auramine O in 0.05 M Tris/HCl buffer, (pH = 7.2), to detect cutinized lipids (Heslop-Harrison & Shivanna, 1977). These sections were visualized with a Zeiss Axioskop microscope equipped with epifluorescence, and imaged with an AxioCam HRc camera, operated by Zen Blue software with multichannel wavelength detection. For calcifluor white, we used a DAPI narrow (Zeiss 48,702) excitation G 365, bandpass 12 nm; for auramine O, we used an AF488/FITC/GFP (Zeiss Filter set 9) excitation 450–490; dichroic mirror 510; emission filter LP515. We isolated the idioblasts by macerating 1 mm² leaf pieces in a solution containing acetic acid:hydrogen peroxide 5:10; emission filter LP515. They were then soaked in the infiltration solution of Technovit 7100 (Electron Microscopy Sciences, Hetfield, PA, USA) for several weeks, and polymerized under anoxic conditions. Blocks with samples oriented parallel to the leaf surface (paradermal) were serially sectioned at 4 μm with a Leica RM2155 rotary microtome (Leica Microsystems, Wetlar, Germany). Sections were then stained with an aqueous solution of 0.025% toluidine blue for general structure of the leaf tissues (Feder & O’brien, 1968), and finally imaged with a Zeiss LSM700 Confocal Microscope. 3D images were obtained without staining with the objective: 63x/1.40 Oil DIC M27 Plan-Apochromat.

Samples obtained from five previously fixed leaves in FAA were washed in distilled water three times, 1 h each, and dehydrated with an increasing gradient of aqueous ethanol concentrations (10%, 30%, 50%, 70% and 100% [x3]). They were then soaked in the infiltration solution of Technovit7100 (Electron Microscopy Sciences, Hetfield, PA, USA) for several weeks, and polymerized under anoxic conditions. Blocks with samples oriented parallel to the leaf surface (paradermal) were serially sectioned at 4 μm with a Leica RM2155 rotary microtome (Leica Microsystems, Wetlar, Germany). Sections were then stained with an aqueous solution of 0.025% toluidine blue for general structure of the leaf tissues (Feder & O’brien, 1968), and finally imaged with a Zeiss Axiolmager A2 Upright microscope equipped with an AxioCam 512 camera and Zen Blue Pro with multichannel software.

2.4 Water and dye uptake experiments

We first monitored epidermal transpiration in 10 fully expanded leaves by letting them dry with their petiole covered with paraffin at room temperature (average 23 ± 3°C) and 30 ± 3% of relative humidity (RH), which is a value that approximates daytime RH in the field. We weighed them every 2 h with a four-digit precision scale, and then divided the weights by the leaf projected area (x2), fitted the temporal loss of each leaf weight to a linear regression function for the initial 10 h and averaged the slopes. This value served as a reference of epidermal evaporation from both leaf sides (slope = −0.041 mg cm⁻² h⁻¹, average r² = 0.95). After that, we calculated the relative leaf water content (RWCT) using the formula RWCT = [(FW₁ - DW₀)/(FW₀ - DW₁)] x 100, where FW₁ is the fresh weight at time t, DW is the dry weight and FW₀ is the fresh weight at time 0 (Figure S1). We further calculated the initial water content of the leaves (WI) as the difference between the fresh weight minus the dry weight per unit leaf area.

To estimate maximum rates of foliar uptake and the strength of water retention, five leaves were weighed (W₀) before being submerged in distilled water, with the petiole sealed, but not submerged, for 15 min (wet cycle). To better estimate the water retained within leaves, we eliminated any surface water; leaves were centrifuged at 1800 rpm for 2 min using a Sorvall RC6 Ultracentrifuge, and immediately weighed with a precision scale (W₁). Leaves were left to dry at room temperature for 15 min (dry cycle) and weighed again before immersion (W₂). The cycle was repeated five times.

Given the sharp day-to-night temperature variation (42°C at midnight to 26°C at midday) and RH (from 48% to 92%), water condensation can occur on both leaf surfaces in the field. To understand the possible contribution of each surface to foliar water uptake, we simulated water condensation on both leaf surfaces. Ten leaves were loaded with 350 μL of distilled water (350 mg) evenly distributed in 35 droplets (10 μL each), covering roughly 25–30% of one surface, five leaves loaded on the abaxial side and five loaded on the adaxial side. When the droplets disappeared from the surfaces, the leaves were weighed with a precision scale, loaded again with the same amount of water, and this cycle repeated. Droplet disappearance was faster from the abaxial leaf surface, resulting in more time points during the 10 h of the experiment, which is an approximation of the persistence of dew on the leaf surfaces under field conditions.

To calculate water absorbed by each surface, we used the following formula for each cycle.

\[
\text{ABS}_t = \left(\frac{\left(W_t - W_{t0} \right) - \left(EP_t \cdot \text{LA} \cdot (t - t_0) \right)}{\text{LA}} \right)
\]

where ABS_t is the water absorbed, measured in mg cm⁻²², at time t (after droplet disappearance from the surfaces), W_t is the weight of the leaves in mg, LA is the leaf exposed area (the projected area of the unloaded surface plus 70% of the loaded one), L_t is the projected leaf area (only one surface) measured in cm² and W t₀ the initial weight of the leaves in mg. EP_t is the epidermal transpiration rate of the leaf surface not covered by droplets (one side plus 70% of the other), which assumes that water loss from the two sides occurs at the same rate: EP_t = −0.035 mg cm⁻²² h⁻¹. We further assumed that the stomata are closed.

To understand the pathways of water uptake, we used a 1% aqueous solution of the apoplastic fluorescent dye tracer Lucifer Yellow (LY; CH dilithium salt; Sigma). Dye (10 μL droplets) was applied to either the adaxial or the abaxial surfaces within a humidified chamber. We waited until the droplets disappeared from the surface, and then used a paper tissue to wipe any traces of the dye from the leaf surface prior to making transverse sections with a double edge razor blade. Sections were mounted in an aqueous solution of 70% glycerol, and immediately observed with a Zeiss LSM700 Confocal Microscope (wavelength 488 nm). Similar sections of the same leaves, but in areas without the dye, were used as negative controls, using the same exposure settings.
We further evaluated the rate of water and dye uptake by each leaf side in vivo, applying 5 μL droplets to the leaves of a seedling, and then taking images every five seconds (Videos S1-S4).

2.5 Immunolocalization of pectin and arabinogalactan glycoprotein epitopes

A preliminary test with the general dye ruthenium red was used in freshly dissected leaves (Figure S2) to evaluate the presence of neutral pectins (Colombo & Rascio, 1977). Similarly, a preliminary test for arabinogalactan protein (AGP) presence was applied to cleared leaves with a 2% solution of the chemical reagent beta-glucosyl Yariv reagent in 0.15 M NaCl (Yariv, Lis, & Katchalski, 1967). The β-GlcYR reacts with AGPs giving a red colour upon precipitation (Figure S3).

To identify the presence of pectic and AGP epitopes in the leaves of *Capparis odoratissima*, two monoclonal antibodies that detect highly un-esterified homogalacturonans (JIM5) and AGPs (JIM8) (Carbosource services, Georgia, USA) were used. Transverse and para-dermal sections (4 μm thick) of embedded leaves were incubated with 1XPBS 3x for 5 min each, followed by 5% bovine albumin serum (BSA) for five more minutes and finally the undiluted primary monoclonal antibody for 45 min. The sections were then washed three times in 1XPBS, 5 min each, and incubated again with an anti-Rat secondary antibody Alexa 488 conjugated with a fluorescent compound fluorescein isothiocyanate for 1 h. Three final washes with 1XPBS preceded observations with a confocal microscope. Negative controls were treated in the same way, but substituting the primary antibody with a solution of 1% BSA in PBS.

3 RESULTS

3.1 External leaf morphology of *Capparis odoratissima*

Detailed evaluations of the oblong, hypostomatous leaves of *C. odoratissima* showed a dark green colour of the adaxial surface (Figure 1a). Numerous translucent spots were located in concave areas of the surface, which corresponded with the tips of individual idioblasts (Figure 1b). Idioblast tips were interspersed between epidermal cells and, after staining and clearing the tissue, displayed a star-like shape when observed from above (Figure 1c). At higher magnification, each idioblast projected a narrow pore towards the adaxial surface of the leaf (Figure 1d). Abaxially, the leaves exhibited a pale green colour (Figure 1e), which resulted from the total coverage of the lamina by an imbricate carpet of peltate hairs (Figure 1f). These non-glandular hairs were variable in size, but each contains a uniform multicellular, umbrella-like base, with thick-walled filiform cells (Figure 1g), and a central domed shield on top that protrudes to the exterior. Despite having very thick walls, there are interconnections between the central channels of the cells (Figure 1h).

3.2 Leaf anatomy of *Capparis odoratissima*: cuticles, peltate hairs and idioblasts

Leaf cross-sections revealed that the idioblasts are thick-walled columnar structures (average length 252.0 μm ± 18.9 SE) that connect the adaxial and the abaxial surfaces (Figure 2a, drawn by Metcalfe & Chalk, 1950). Idioblasts did not stain for lipids, but auramine O staining revealed a thick cuticle layer on the adaxial surfaces of the leaves (Figure 2b), which were thinner in the concave depressions on top of the idioblasts. In contrast, the thick columnar walls of the idioblasts (average diameter 23.6 μm ± 0.5 SE) stained intensely with calcofluor white (Figure 2c), indicating the presence of cellulose in the thick walls, while staining with phloroglucinol indicated partial lignification. The abaxial surface of the leaf showed a thinner but rugose cuticle under the peltate hairs (Figure 2d). At the anchoring areas of the peltate hairs, the abaxial epidermis accumulated thick lipidic deposits (Figure 2e).

Idioblasts exhibited a bipolar pattern from the adaxial to the abaxial side of the leaf (Figure 3a). A thin projection that protruded apoplastically between the cells of the adaxial epidermis connected with the surface, and was sustained underneath with four-to-five filiform anchors attached to the base of the epidermal cells (Figure 3b). In the area of the palisade parenchyma, the idioblasts had a columnar shape, with a thick wall, narrow lumen (average diameter 3.9 μm ± 0.3 SE) and crenations that connected the lumen with the palisade parenchyma (Figure 3c). In the spongy mesophyll, the irregular shape of idioblasts was characterized by numerous protuberances and crenations that connected the lumen of the idioblasts with adjacent mesophyll cells (Figure 3d). Closer to the abaxial side of the leaf, the idioblasts became thinner, as well as anastomosed and converged towards the base of the peltate hairs, maintaining narrow channels that connected the lumen of the idioblast with the lumen of the peltate hair (Figure 3e). On average, four idioblasts were connected to each peltate hair (Figure 4), whereas the frequency of abaxial stomata under the peltate hairs was significantly lower than that of idioblasts.

3.3 Leaf water uptake in *Capparis odoratissima*

The initial water content of detached leaves was approximately 9.5 mg cm⁻². Weight loss of leaves exposed to lab conditions was used to understand epidermal evapotranspiration (Figure S1). Leaf water content remained higher than 80% during the first 21 h of exposure at low humidity, but then decreased sharply, with leaves becoming brittle 143 h after the initial measurements. The epidermal water loss rate over the first 10 h was 0.041 mg cm⁻² h⁻¹.

To understand the speed and extent of water retention in a saturated environment, leaves of *Capparis odoratissima* were intermittently
submerged for 15 min (wet cycle), when they absorbed water at a rate of 0.30 mg cm$^{-2}$ h$^{-1}$. Rates of water loss during the dry cycle averaged 0.27 mg cm$^{-2}$ h$^{-1}$, approximately seven times larger than epidermal water loss rates of leaves allowed to dry over a period of many hours. The water retained following each dry cycle (i.e., not evaporated) increased at a rate of 0.013 mg cm$^{-2}$ h$^{-1}$ (Figure 5a), suggesting that evaporative losses became smaller with each cycle ($r^2 = 0.97$).

The contribution of adaxial and abaxial leaf surfaces to water uptake was evaluated by loading each surface individually with water droplets (Figure 5b). Comparing the proportional weight variation over time revealed that even though only 30% of one surface was covered with water, the leaves significantly reduced their evaporative losses. However, there was a clear asymmetry: leaves loaded on the adaxial surface reduced their proportional water losses twofold with respect to the unloaded leaves, whereas leaves loaded on the abaxial surface reduced their evaporative losses almost six times. While this indicates that both surfaces can absorb water, water uptake by the abaxial surface was approximately three times larger (0.033 mg cm$^{-2}$ h$^{-1}$, $r^2 = 0.84$) relative to water absorption by the adaxial surface, suggesting that the two surfaces have different absorption capacities. To confirm this, the assumption of equal rates of epidermal evaporation from each surface should be tested.

3.4 | The pathways of leaf water uptake in *Capparis odoratissima*

Dye loading onto the abaxial surface resulted in uptake that we believe was mediated by the central anchoring area of the peltate...
hairs (Figure 6a) due to the intense staining that remained in the thick walls of this central area of the peltate hairs after dye absorption (Figure 6b, Videos S2-S3). Fluorescence was further observed in the mesophyll of the leaves when dye was loaded onto either the adaxial or the abaxial surface, pointing to the dual role of the leaf surfaces in water uptake. Yet, the dye applied to living seedlings did not travel far from the area of application within the leaf tissues, perhaps because the dye does not move as easily through the tissue as does water (for a discussion see Canny, 1993). Strikingly, the structures that retained the dye the most were the walls of the idioblasts, compared with a lack of fluorescence in these structures at the areas of the leaf without dye, which were used as negative controls (Figure 6c-d). The lumen of the idioblasts also became filled with the fluorescent dye, including the crenations (Figure 6e-f), revealing them as the bridges of water uptake from the leaf surface to the mesophyll.

3.5 | Pectins and arabinogalactan proteins in the leaves of Capparis odoratissima

Immunolocalization of pectin and arabinogalactan protein epitopes with monoclonal antibodies showed a dual topological pattern. Pectin epitopes were present in the cell walls of both adaxial and abaxial epidermis (Figure 7a-b), as roughly detected in fresh samples with ruthenium red (Figure S2a), in the external walls of the cells composing the spongy mesophyll (Figure 7c) and the external cell walls of the peltate hairs (Figure 7d; Figure S2b), but not in the idio-
The presence of arabinogalactan proteins was roughly detected with the beta-glucosyl Yariv reagent, which showed an intense red colour in areas with idioblasts (Figure S3). More specifically, the epitopes recognized by the JIM8 monoclonal antibody labelled a narrow area that corresponded with the lumen of the idioblasts, from their adaxial projection (Figure 7e), through the columnar lumen in the palisade parenchyma (Figure 7f), to the lumens of the anchoring areas of the peltate hairs (Figure 7g). As a result, AGPs coated the continuum of lumens between the peltate hairs and idioblasts.
coexisting in the same environment,

0.041 mg cm^{-2} petiole sealed, water loss rates of

inputs and outputs. During the initial epidermal evaporation with the

from detached leaves serve to constrain the extreme values of water

ration) and entry of water (measured as the increase of leaf weight)

evaluations of water evaporation through time (i.e., epidermal evapo-

mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

coexisting in the same environment, C. odoratissima increased its bio-
mass when the canopy, but not the soil, was supplied with water

(Díaz & Granadillo, 2005). However, the magnitude and pathway of

water uptake by individual leaves were not quantified. Our detailed

evaluations showed that, unlike other species

c}
covered by a carpet of peltate hairs, which should reduce evapor transpiration, are probably ways of water scape. Pubescence is a typical character of xerophilous species, and functionally related with protection against desiccation and thus temperature regulation (Fahn, 1986; Shields, 1950). Future work is needed to explore the impact of the peltate hairs of the abaxial epidermis on reducing rates of water loss by stomata in vivo.

4.2 | Asymmetric foliar water uptake and anatomical specializations in Capparis odoratissima

Our experiments with water droplets on each leaf surface revealed an asymmetry in the water uptake. Both surfaces of the C. odoratissima leaves loaded with water droplets showed an initial positive gain of water with time. However, when water was applied to the adaxial surface, water gains were only possible for the initial 6 h of exposure, and then water losses occurred. In contrast, when the abaxial surface was loaded, water uptake was linear, and followed a rate of 0.033 mg cm$^{-2}$ h$^{-1}$, an order or magnitude lower than submerged leaves, due to evaporative losses of the exposed leaf surfaces. Previous work with the Australian subtropical species S. woolii (Yates & Hutley, 1995) showed similar rates for sprayed leaves, although these results were questioned by Kerstiens (1996), who suggested that small cracks in the cuticle could explain the extremely high leaf permeances. Natural openings (i.e., not created by microorganisms) are unusual in the adaxial leaf surface, except in amphistomatic leaves, or leaves with hydathodes (Martin & von Willert, 2000). However, we found thousands of micropores per cm2 area projecting towards concave areas on the adaxial leaf surfaces in Capparis odoratissima, which likely correlate with apoplastic water transport from the atmosphere to the leaf. These openings connect with the lumen of columnar idioblasts, pointing to these structures as significant players in the leaf water budgets.

Idioblasts have rarely been demonstrated as contributing to foliar water uptake in angiosperms, with some exceptions such as Hakea suaveolens (Heide-Jorgensen, 1990). However, their topology in the numerous forest species where they have been described, including gymnosperms (Hooker, 1864), and more than 80 eudicot families (Foster, 1955a, 1955b; Rao & Mody, 1961; Solereder, 1908; Vitarelli, Riina, Cassino, & Meira, 2016; Zhang, Hu, Li, Wang, & Xu, 2009), suggested a role in the storage of water in leaves. As thick-walled sclerechymatous tissues (Evert, 2006), idioblasts evolved multiple shapes and dispositions within leaves, but the columnar type of idioblasts displayed in the leaves of C. odoratissima have only been described in two species so far, Hakea suaveolens (Heide-Jorgensen, 1990) and Mouriria huberi (Foster, 1947). These adaptations cannot be related to xeric environments, as other species from the same genus and adapted to dry climates have completely different anatomies, such as the Mediterranean Capparis spinosa (Gan et al., 2013; Rhizopoulou, 1990; Rhizopoulou & Psaras, 2003).

In nature, water condenses most likely on the adaxial surface of leaves, and, indeed, most studies of foliar water uptake suggest that the adaxial side is more permeable to water (Fernández et al., 2014; Gardingen & Grace, 1992). In C. odoratissima, the reasons behind the asymmetric water uptake correlate with the markedly distinct anatomy between leaf surfaces. Although uptake from the adaxial surface is modest compared with the abaxial one, this dual possibility is unique among flowering plants. Indeed, this correlates with their unique leaf anatomy, in which the lumen of the idioblasts formed a continuum with the peltate hairs located in the abaxial surface, traversing the cross-sectional area of the leaves. As a result, an intricate network of microchannels linked both surfaces with the mesophyll. Trichome–idioblast associations are commonly found in species from arid environments such as those from the family Euphorbiaceae (Metcalfe & Chalk, 1950; Solereder, 1908), Olea europaea (Arzeeee, 1953) or Androstachys johnsonii (Alvin, 1955a, 1955b) or Solereder, 1908; Vitarelli, Riina, Cassino, & Meira, 2016; Zhang, Hu, Li, Wang, & Xu, 2009), suggested a role in the storage of water in leaves. As thick-walled sclerechymatous tissues (Evert, 2006), idioblasts evolved multiple shapes and dispositions within leaves, but the columnar type of idioblasts displayed in the leaves of C. odoratissima have only been described in two species so far, Hakea suaveolens (Heide-Jorgensen, 1990) and Mouriria huberi (Foster, 1947). These adaptations cannot be related to xeric environments, as other species from the same genus and adapted to dry climates have completely different anatomies, such as the Mediterranean Capparis spinosa (Gan et al., 2013; Rhizopoulou, 1990; Rhizopoulou & Psaras, 2003).

In nature, water condenses most likely on the adaxial surface of leaves, and, indeed, most studies of foliar water uptake suggest that the adaxial side is more permeable to water (Fernández et al., 2014; Gardingen & Grace, 1992). In C. odoratissima, the reasons behind the asymmetric water uptake correlate with the markedly distinct anatomy between leaf surfaces. Although uptake from the adaxial surface is modest compared with the abaxial one, this dual possibility is unique among flowering plants. Indeed, this correlates with their unique leaf anatomy, in which the lumen of the idioblasts formed a continuum with the peltate hairs located in the abaxial surface, traversing the cross-sectional area of the leaves. As a result, an intricate network of microchannels linked both surfaces with the mesophyll. Trichome–idioblast associations are commonly found in species from arid environments such as those from the family Euphorbiaceae (Metcalfe & Chalk, 1950; Solereder, 1908), Olea europaea (Arzeeee, 1953) or Androstachys johnsonii (Alvin, 1955a, 1955b).
Our results revealed a high hygroscopicity of the peltate hairs of *C. odoratissima*. Hygroscopic peltate hairs have been reported in some angiosperm species (Bickford, 2016; Eller et al., 2016; Grammatikopoulos & Manetas, 1994; Pina, Zandavalli, Oliveira, Martins, & Soares, 2016; Vitarelli et al., 2016), with the best studied being epiphytic bromeliads (Benz & Martin, 2006; Benzing, 1976; Benzing et al., 1978; Benzing & Burt, 1970; Ohrui et al., 2007; Raux et al., 2020). While a trade-off between epidermal evaporation and water entrance from the atmosphere might exist, in *C. odoratissima*, this trade-off favours the uptake of water from the trichomes of the abaxial surface, and from the idioblast tips when water condenses in the adaxial surface. Strikingly, loading the leaves of a seedling in vivo revealed that the droplet disappearance from the adaxial surface was similar to that of the abaxial surface.

4.3 | The biochemistry of foliar water uptake in *Capparis odoratissima*

The pathway of atmospheric water entry in the leaves of *C. odoratissima* involves hygroscopic materials deposited in the leaf coatings (Gouvra & Grammatikopoulos, 2003). In the current work, we first describe the thick-walled structures composing the multicellular peltate hairs, which project pectins to the external part, suggesting their involvement in the initial water capture when condensation happens in the abaxial side. A few reports have revealed the presence of pectins in trichomes, such as species from semi-arid forests like *Combretum leprosum* (Pina et al., 2016), the tropical species *Drymis brasiliensis* (Eller, Lima, & Oliveira, 2013) or in the trichomes of *Fagus* (Schreel, Leroux, et al., 2020). In addition, we revealed that both
epidermal and spongy mesophyll cells show a high concentration of un-esterified pectins in their cell walls. This is in line with the ubiquity of pectins within the leaf mesophyll. In the leaves of *C. odoratissima*, the tight association of mesophyll cells and their exposed pectins with the numerous idioblasts may imply a pulling force for water deposited on the leaf surfaces, using idioblasts as carriers.

The idioblasts of *C. odoratissima* are highly hygroscopic, with cellulosic walls that contain polar molecules for water attachment, but also partially lignified, suggesting a secondary role in defence and structural support. A finely tuned water uptake in *C. odoratissima* is revealed by our experiments with the apoplastic dye tracer Lucifer Yellow. Water entering from the surrounding atmosphere to the idioblasts flows through an intricate network of crenations and branches within the idioblasts that connect all leaf tissues and the exterior. Most striking is the fact that epitopes belonging to AGPs are specifically located within these channels. AGPs are highly branched proteins with a short amino acid backbone attached to the plasma membrane of cells, and a large saccharidic part that has been related with nutritive and/or signalling functions between cells (Ellis, Egelund, Schultz, & Bacic, 2010). AGPs play different roles in plant development, including mate recognition and support during reproduction, proper early seedling development and many others (Majewska-Sawka & Nothnagel, 2000; Pereira, Lopes, & Coimbra, 2016; Vaughn, Talbot, Offler, & McCurdy, 2007). However, the role of AGPs in plant hydration has been scarcely studied. Remarkably, works evaluating the composition of the cell walls in the resurrection plant *Craterostigma wilmsii*, which can completely dry out and subsequently regain water, point to the hygroscopic properties of AGPs as critical players in this rapid and effective rehydration (Vicré, Lerouxel, Farrant, Lerouge, & Driouich, 2004). AGP-related proteins have been
previously related with the tensile strength of stems due to their participation in secondary cell-wall composition, such as in the vessels or fibres (Ito, Suzuki, Miyamoto, Ueda, & Yamaguchi, 2005; Liu et al., 2013). But the presence of AGPs has never been reported before in idioblasts with such specific pattern as in the current work. What this reveals is the biochemical complexity of sclerenchymatous tissues, which are possible effectors enabling hydration of tissues during periods where water deficits in the soil combine with water saturation in the atmosphere (Figure 8). Thus, AGPs may be secreted to the lumen of the idioblasts during development, serving as bridges of water uptake between the atmosphere and the leaf mesophyll. Future works should explore the presence of AGPs in sclerenchymatous tissues of other species, as well as their putative role in leaf capacitance.

5 | CONCLUSIONS

Leaf water absorption has been widely studied in the major groups of angiosperms, including magnoliids (eight genera), monocots (seven genera) and eudicots (67 genera) (reviewed by Berry et al., 2019, and by Dawson & Goldsmith, 2018), pointing to foliar water uptake as a key factor affecting plant function in most ecosystems (Weathers et al., 2019). However, the effect of foliar hydration in the overall plant physiology is stronger in dry or semi-dry environments (Schreel et al., 2019), such as the dryland tropical areas where C. odoratissima grows, where the water in the soil is often a limiting resource, and foliar water uptake may become pivotal for plant growth and survival.

Our data strongly suggest that the pathway for water uptake in C. odoratissima is mediated by the interconnected idioblasts and peltate hairs. We propose a model (Figure 8) that involves apertures of the leaves towards the adaxial surface, which are involved in water uptake, but may facilitate evapotranspiration. Hygroscopic materials belonging to arabinogalactan proteins serve to draw water into the lumen of the idioblasts, whilepectins in the mesophyll and the epidermis may further facilitate the incorporation of water into leaf tissues. We believe that this cascade of biochemical and physical events underlies the ability of Capparis odoratissima trees to utilize atmospheric water resources.

ACKNOWLEDGEMENTS

We are grateful to Ned Friedman, Kea Wodruff and Faye Rosin from the Arnold Arboretum of Harvard University for access to laboratory, greenhouse and imaging facilities. We thank Mr. Omar Fernando Sierra and Ms. E. Granadillo for help with plant material. Juan M. Losada is a ComFuturo Researcher at the IHSM-CSIC-UMA, funded by the Fundación General CSIC (FGCSIC), and within the project RTI2018-102222A100, from the Spanish Ministry of Science and Innovation. Miriam Díaz acknowledges a British Council Fellowship that allowed her to initiate this project while at the University of Cambridge and a Cisneros Fellowship the David Rockefeller Center for Latin American Studies that allowed her to continue this research at Harvard. This work was additionally supported by the National Science Foundation (EAGER 1659918, IOS 1456845 and the Harvard University Materials Research Science and Engineering Center DMR 2011754).

CONFLICT OF INTEREST

The authors declare there is no conflict of interest.
DATA AVAILABILITY STATEMENT
Data are available upon request to the corresponding author.

ORCID
Juan M. Losada https://orcid.org/0000-0002-7966-5018
N. Michele Holbrook https://orcid.org/0000-0003-3325-5395

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.