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The phloem plays a central role in the functioning of plants [1,2]. As the

nexus for carbohydrate distribution within plants, this network of living

conduits sits at the epicenter of the mechanisms that control allocation of

resources between sources and sinks. Thus, the agronomic and ecological

implications of understanding phloem functioning are huge. Nearly all of the

food that we eat and all of the carbon sequestered by forests is translocated

through the phloem.

Furthermore, the phloem is much more than a system for distributing

resources. Phloem contributes to whole plant integration by transporting

information and ‘perceiving’ injury. At the same time, the phloem makes

plants vulnerable to pathogens, which use it as a pathway for infection.

Phloem-mobile viruses and bacteria cause epidemics in all agronomically

important crops, and resulting yield losses range between 20% and 40%

worldwide [3].

The present issue highlights recent progress in understanding phloem

biology and provides a guidepost for future research. The papers collected

here focus on classical issues relating to carbohydrate transport such as how

the structure of sieve elements affects the osmotically generated pressure

gradients needed to drive flow [4], as well as more recent concerns such as

what controls the entry and exit of signaling molecules into the phloem, how

the phloem is both used by and protected from biotic vectors, and the extent

to which phloem functioning may be impacted by drought and climate

change [5]. These issues lie at heart of food production and ecosystem

functioning and thus are central to how research on phloem can contribute

towards our collective future [6].

Phloem structure and development
Sieve elements are among the most highly differentiated cells in the plant

body. During maturation, they undergo wall remodeling, including the

formation of the sieve plate, and the loss of many organelles, notably both

the vacuole and the nucleus. Anne and Hardtke [7] review progress in

unraveling the genetic network underlying specification of protophloem

identify and, in particular, the key role of Octopus gene family as a master

regulator of sieve element differentiation.

Several recent studies have focused on how sieve tube structure, and thus

hydraulic resistance to flow, varies as a function of position within the plant

[8–10]. In a review of the biophysics of phloem transport, Jensen [11]
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highlights how the scaling of sieve tube size and structure affects the

pressure gradient needed to drive phloem sap from sources to sinks. This

then raises the question of how the architecture of the phloem network

arises from the position-dependent differentiation of individual sieve

elements. From this perspective, Carvalho et al. [12] review new work

investigating phloem networks within leaves. They focus on how sieve

tube structure varies with vein order, comparing leaves with different

venation patterns. One of the advantages of net venation appears to be that

that the total amount of phloem in minor veins can be huge, and that these

loading regions then feeds into a smaller number of larger conduits in

larger veins.

At the same time that we have increasing confidence in Münch flow as the

mechanism for phloem transport in all angiosperms [9], much about carbo-

hydrate movement in gymnosperms remains mysterious. Not only are

gymnosperm sieve cells narrower than in angiosperms, but the structure

of sieve area pores is more akin to plasmodesmata than to the open sieve

plate pores. Liesche and Schulze [13] review recent work on the structure of

gymnosperm phloem. They note that the sieve cells found in gymnosperms

are wider at the base of the plant, suggesting that the design principles

guiding phloem network architecture are similar between these two major

groups of seed plants. In addition, they highlight the question of whether the

ER that penetrates sieve area pores in gymnosperms should be seen solely as

an obstruction to flow, or whether it may, in fact, have an active role in

moving phloem sap from one sieve cell to the next.

Phloem transport of carbohydrates and other metabolic
cargo
Carbohydrate transport is the central task of the sieve tube system. Before

phloem loading can occur in leaves, carbohydrates must move from their

sites of synthesis in mesophyll cells to the veins. Rockwell et al. [14]

address how water potential gradients within the leaf due to transpiration

affect the pre-phloem movement of sugars and under what circumstances

Münch flow (convection) in symplasmic loaders might be said to begin in

the mesophyll.

After the cargo moves to the veins, it must then be loaded. Three distinct

loading mechanisms have been described [15]. Solutes may follow a con-

centration gradient from mesophyll cells to sieve tubes, which is reflected in

numerous plasmodesmata connecting adjacent cells to provide a symplastic

path of low resistance [16]. Other plant species create an apoplasmic barrier

to control loading via membrane transporters [17]. The third mechanism

involves passive diffusion through plasmodesmata, but a subsequent poly-

merization of the cargo to increase its size exclusion limit and prevent back-

diffusion [18]. These mechanisms have seen great experimental support

over the last decades. Zhang and Turgeon [19] provide a critical review and

new perspectives.

Investigations on phloem transport have suffered for a long time from the

inaccessibility of the cells. Usually they are deeply embedded in opaque

layers of protective dermal, cortical, and sclerenchyma tissue making

direct observation difficult. New imaging tools utilizing transparent

tissues or preparative protocols to visualize living sieve tubes, together

with a palette of newly discovered phloem mobile dyes that use different

loading modalities mimicking those of natural compounds allow us now to

track loading, transport, and unloading in situ are reviewed by Knox and

Oparka [20].

characterization of sieve plates. Recent
studies focus on phloem unloading, sieve

tube proteomics, long distance signaling and

plant pest interactions.
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Experimental challenges also hold true for the unload-

ing process into sinks, which is a central process in

defining allocation. A mature plant usually contains

thousands of sinks competing for resources. A central

question here is, what defines sink strength? While the

initial step of unloading in some sinks such as roots is

symplastic via specialized plasmodesmata, post-unload-

ing may involve transporters. In other sinks like devel-

oping seeds a mandatory apoplastic step exists which

requires active transport over the membrane. Passive

unloading is dominated by biophysics via the conduc-

tivity of plasmodesmata and transporters, which are

driven by a concentration gradient. Active uptake is

controlled by transporters and their expression profile.

How a plant controls these mechanisms in order to

balance distribution to all sinks is a matter of intense

study. Progress in this area is reviewed and discussed by

Milne et al. [21].

Lee and Frank [22] discuss the specialized plasmodes-

matal connections that regulate the entry and exit of

material into the phloem, noting that this includes the

phloem’s metabolic cargo, as well as long-distance signal-

ing molecules and superfluous escapees. They highlight

the discovery of structurally distinct ‘funnel’ plasmodes-

mata that connect protophloem sieve elements with

phloem pole pericycle cells and serve as the major

unloading pathway in roots. Carbohydrates are also

unloaded and stored in large amounts in stems. Given

that 40% of a tree’s non-structural carbon stores are

located within their stems, Furze et al. [23] argue that

the phloem needs to be understood as more than a long-

distance highway and that a greater focus on the distrib-

uted unloading into storage that occurs within stems will

provide insights relevant to the growth and allocation

patterns of trees.

While carbohydrates usually account for the majority of

transported solutes in the phloem, numerous other cargos

are present in the phloem sap. Major components of high

importance are nitrogen compounds such as amino acids.

While N components can in principle follow the same

symplastic route as carbohydrates in passive loaders,

specific transporters are required to cross membranes.

Recent studies on amino acid transporters have also

shown that the notion that photosynthesis is the defining

and limiting factor for plant yield, and that all other

processes follow if only we would be able to increase

photosynthesis capacity, is short sighted. Overexpression

of transporters (e.g. AtAAP1) in sinks may lead to signifi-

cant increases in yield and upregulation of photosynthe-

sis. Tegeder and Hammes [24] discuss the processes of N

phloem loading, unloading and the impact of manipula-

tions of transporter expression levels, while the issue of

source or sink limitation and next generation strategies

for crop yield improvement are the focus of the paper by

Sonnewald and Fernie [25].
www.sciencedirect.com 
Phloem as a long-distance highway for the
movement of signals and disease vectors
The topic of long distance signaling is currently probably

the most controversial topic in phloem biology. A surpris-

ing number of molecules, including thousands of proteins

and RNAs have been detected in phloem sap but for only

a minute fraction of those, a function could be assigned (e.

g. flowering locus T). There are different opinions on the

impact, the origin and the function of trace components in

the phloem sap and our aim was to provide various points

of view.

Phloem proteomics has been done so far on phloem

exudates, because no methods exist to isolate pure sieve

tubes. The current state and technical challenges to

collect sieve tube exudate proteins and to identify func-

tional proteins are discussed by De Marco et al. [26]. The

fact that thousands of proteins can be found in exudates is

certainly a surprise, but that a similar amount of tran-

scripts is present in the sieve tube sap and that those

transcripts move over graft unions may be even more

surprising. Morris [27] critically discusses the selectivity,

specificity and the signaling potential of messenger RNAs

in the phloem sap in the context of recent findings.

In general it is assumed that components found in the

sieve tube sap originate in neighboring companion cells.

Another source of origin, however, exists when young

sieve elements degrade their organelles, open up their

pores and are integrated in the actively transporting sieve

tube. In this moment the degraded substances become

part of the sieve tube sap and will be collected in

exudates. Knoblauch et al. [28] provide an evaluation of

the contribution of those cellular remnants to the overall

phloem sap components and critically discuss the impact

on our understanding on signaling and sieve tube

structure.

Movement of chemical signals in the translocation stream

is limited by phloem flow direction and speed. The cable-

like construction provides, however, a structural founda-

tion for other mechanisms such as electrical signals which

are independent on phloem flow direction and speed, are

much faster and are an ideal basis for long distance

information transmission. New techniques on investigat-

ing these phenomena have improved our understanding

significantly over the last years and are summarized by

Hilleary and Gilroy [29].

Furthermore, a large number of pathogens utilize the

phloem for systemic infection. While local infection of,

for example, individual leaves does not represent a major

problem for a plant, pathogens become a real threat once

they reach the phloem and spread systemically. High-

jacking the phloem obviously requires specific interac-

tions, and improvement of our knowledge certainly bears

the hope of creating effective counter measures.
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Folimonova and Tilsner [30] provide a critical discussion

on our current understanding of cellular mechanisms

and interactions between plant viruses and their host

plants.

Phloem transport in a changing world
The future holds many things, including rising atmo-

spheric CO2 concentration, more intense drought, and

greater agricultural demand to supply a human population

increasing in both numbers and dietary affluence. Given

the central role that carbohydrates and their transport

plays in the growth and development of plants, under-

standing phloem is relevant to predicting and improving

the stability and productivity of forest and agricultural

systems.

Ainsworth and Lemonnier [31] explore a possible link

between loading type and the degree of photosynthetic

acclimation to elevated CO2 thought to arise in response

to a build-up of carbohydrates in source tissues. They

further discuss transgenic strategies to increase yield by

targeting carbohydrate management in both sources and

sinks. Without a concomitant increase in sink capacity,

limitations in carbohydrate export from leaves can cause

photosynthesis to be down regulated.

How drought impacts phloem is discussed by Sevanto

[32]. Here the key issue is the extent to which phloem

transport can persist even after stomata have closed, thus

allowing plants access to stored resources. Integrity of the

phloem appears to be essential for surviving serve

droughts and loss of phloem turgor one of the best

predictors of drought-induced mortality.

Concluding perspective
The papers collected here demonstrate that phloem

research has shifted into high gear. In large part, prog-

ress has been enabled by development of new tools,

both physiological and genetic, and propelled by the

potential for discoveries relevant to crop improvement

and ecological resilience.  At the same time, there is still

much to learn [33]. For example, with the exception of

mitochondria we do not even know what the other sieve

element organelles do [34]. This is in stark contrast to

all other major cell types, where the function of orga-

nelles is well established. Because phloem allows the

highly decentralized plant body to function as an inte-

grated whole, further work in this area will shed light on

the key question of how plants coordinate growth and

assimilation in distant regions and thus balance invest-

ments between producing new sources and new sinks

[35].
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