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Abstract. Hemlock woolly adelgid (Adelges tsugae Annand) (HWA) is an invasive insect that feeds upon the foliage of
eastern hemlock (Tsuga canadensis (L.) Carrière) trees, leading to a decline in health and often mortality. The exact
mechanism leading to the demise of eastern hemlocks remains uncertain because little is known about howHWA infestation
directly alters the host’s physiology. To evaluate the physiological responses of eastern hemlock during early infestation of
HWA, wemeasured needle loss, xylem hydraulic conductivity, vulnerability to cavitation, tracheid anatomy, leaf-level gas
exchange, leaf water potential and foliar cation and nutrient levels on HWA-infested and noninfested even-aged trees in
an experimental garden. HWA infestation resulted in higher xylem hydraulic conductivity correlated with an increase in
average tracheid lumen area and no difference in vulnerability to cavitation, indicating that needle loss associated with
HWA infestation could not be attributed to reduced xylem transport capacity. HWA-infested trees exhibited higher
rates of net photosynthesis and significant changes in foliar nutrient partitioning, but showed no differences in branch
increment growth rates compared with noninfested trees. This study suggests that HWA-induced decline in the health of
eastern hemlock trees is not initially caused by compromised water relations or needle loss.
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Introduction

Hemlock woolly adelgid (HWA) (Adelges tsugae Annand) is an
invasive insect introduced to the United States from East Asia.
First reported in 1951 in the eastern United States (Souto et al.
1995), this insect has spread rapidly into the north-eastern
United States and has been responsible for the decline and
death of many eastern hemlock (Tsuga canadensis (L.) Carrière)
trees (Orwig et al. 2002;Gómez et al. 2015).HWAfeed on xylem
ray parenchyma cells at the base of young needles, ultimately
causing loss of vigour, premature needle drop and defoliation
(Young et al. 1995; Stadler et al. 2005). HWAactively feed in the
spring to early summer, aestivate during the warmer summer
months and resume feeding again in the autumn (Stadler et al.
2005). Infestations of HWA can result in the death of mature
eastern hemlocks within 4 years (McClure 1991).

Although the effect of HWA infestations on forest health are
well documented (Orwig et al. 2013), little is known about this
invasive insect’s impact on physiological processes in eastern

hemlock during early stages of infestation. One possibility
for how HWA impacts eastern hemlock is that consuming
photosynthates stored in parenchyma cells causes needle loss
and an overall reduction in growth and crown vigour (i.e. branch
dieback, bud mortality) (McClure 1991; Young et al. 1995).
A second possibility is that HWA infestation impairs water
transport through the formation of abnormal xylem tissue
(Domec et al. 2013). A common anatomical feature resulting
from HWA infestation is the formation of false rings (Gonda-
King et al. 2012), which are dark-coloured latewood bands
of thick-walled tracheids that exhibit a gradual transition to
earlywood on either side of the band (Stokes and Smiley 1996).
False rings have been linked to decreased xylem hydraulic
conductivity (Domec et al. 2013; but see Salleo et al. 2003) and
are formed in some species in response to drought conditions
(Hollingsworth and Hain 1992; Cherubini et al. 2003;
Copenheaver et al. 2006). According to research linking the
structural properties of tracheids and vulnerability to cavitation
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(Mayr and Cochard 2003; Rosner et al. 2007), the thin-walled
tracheids that form after false rings may increase the vulnerability
of infested trees to cavitation (Copenheaver et al. 2006). However,
the potential connection between vulnerability to cavitation and
HWA infestation has not been tested.

Much research has focussed on trees that have been heavily
impacted by chronic HWA infestation. Though they are
informative in evaluating physiological parameters of heavily
diseased trees during the onset of HWA-induced mortality,
such results could be attributed to secondary responses to loss
of vigour and needle loss, rather than the direct impact of the
HWA infestation. In this study, we evaluate the influence of
HWA infestation on (1) needle loss; (2) xylem structure and
function (i.e. tracheid dimensions, branch increment growth
rate, hydraulic conductivity and vulnerability to cavitation);
(3) photosynthetic rate and stomatal conductance; and (4)
foliar nutrient levels, as nutrient status represents another way
that HWA could affect the vigour of eastern hemlock. Using
infested and noninfested trees in an experimental garden, we
integrate these measurements to explore the direct impact
of HWA on young hemlock trees during the early stages of
infestation.

Materials and methods
Study site and treatment

Experiments were conducted at an experimental site
established by Miller-Pierce et al. (2010) to investigate the
impact of infestation by HWA on the growth and foliar
chemistry of eastern hemlock (Tsuga canadensis (L.) Carriè).
Details of this experimental site are outlined in Miller-Pierce
et al. (2010) andGonda-King et al. (2012), and the relevant details
are summarised as follows. In 2007, 0.7- to 1-m tall hemlock
saplings were collected from Pelham, Massachusetts, a site that
was, at the time, on the northern boundary distribution limit for
HWA. Observations of both saplings and surrounding trees
confirmed that insects were absent. The saplings were
transplanted in a rectangular grid, spaced 2m apart, in an open
field located at East Farm, University of Rhode Island,
(Kingston, Rhode Island; 41�28023.505600N 71�30037.5300W).
The mean annual temperature is 10.5�C and the mean annual
precipitation is 1343mm. Within a randomised complete block
design, the trees in each rowwere randomly assigned a treatment.
We conducted our tests on HWA-infested and noninfested
(control) trees. Yearly inoculations with HWA occurred each
spring from 2007 to 2011. To prevent cross-contamination, each
tree was covered by a 1� 1� 2m (length�width� height)
enclosure consisting of PVC piping and mosquito netting.
Analyses of insect densities were conducted in autumn and
spring from 2007 to 2010 (Miller-Pierce and Preisser 2012)
and again in the summer of 2011 confirmed the treatments. In
2011, control trees had zero adelgids, whereas HWA-infested
trees had an average of 2.6 adlegids per cm branch (Soltis and
Orians, unpubl. data), which represents a moderate to heavy
level of HWA infestation (Paradis 2011).

Collection of plant material from and measurement of six
HWA-infested trees and eight control hemlock trees (~10 years
old) occurred on the 9 and 16 June 2011 during the feeding
cycle of the adelgid. For measurements of xylem structure

and function at the site of infestation, two branches were
removed from each tree with hand pruners in the early
morning. This method of collection was replicated for control
trees. Each branch was submerged in water during excision
(Wheeler et al. 2013). After excision, each branch was
immediately recut underwater to remove a 30-cm stem segment.
Stem samples were kept underwater during transport to the
laboratory and until processing. Branches and needles distal to
the cut stem segment were collected, stored in large ziplock bags
and kept cool for transport and until processing. To coincide with
the duration of treatment, only branches 3–5 years old were used
for analyses of hydraulic conductivity, vulnerability to cavitation,
needle loss, wood anatomy, and growth rate.

Hydraulic conductivity

Measurements of the hydraulic conductivity of hemlock were
conductedbymeasuring theflowdrivenbyagravityhead through
a stem sample to an analytical balance (Sartorius Model
CPA225D) (Sperry et al. 1988). A perfusion solution of
10mM KCl in deionised ultrafiltered water (MilliQ UV plus,
Millipore) was used. Prior to all measurements, the perfusion
solution was refiltered through a 0.2-mm syringe filter (Acrodisc
syringe filters, Pall Corporation). From the 30-cm stem segments
collected in the field, a section 3–5 years old, 3.25–7.7mm in
diameter and 14.5 cm in length was recut underwater. Prior to
measurements, both ends of the segmentwere shavedwith a sharp
razor blade. Maximum conductivity (Kmax) was measured after
removal of embolisms by flushing stems with 10mM KCl at
0.1MPa for 20min. Hydraulic conductivity was referenced to
the xylem cross-sectional area (xylem-specific conductivity, Ks)
or total downstream leaf area (leaf-specific conductivity, LSC)
(Ewers and Zimmermann 1984). Xylem area for each branch
segment was measured via image analysis (ImageJ Software,
National Institutes of Health) of xylem cross-sections from the
proximal end of each branch segment, and was calculated by
taking the average diameter of two perpendicular cross-sectional
axes. There was no significant difference in mean branch
diameter between treatments (P > 0.5).

Leaf area distal to the measured branch segment was
calculated by scanning fresh needles (Model LI-3100 Area
Meter, LI-COR). The dry weight (DW) and scanned area (i.e.
specific leaf area in m2 kg–1) of a subset of needles was used to
estimate the total leaf area distal to the measured stem segment
based on the DW of all needles from each sample (Domec et al.
2013). The Huber value, which represents the ratio of sapwood
area to needle area, was used for calculations of LSC (Tyree and
Zimmermann 2013).

Vulnerability to cavitation

The vulnerability of the xylem to cavitation was measured by
following the centrifuge technique (Alder et al. 1997) with
a perfusion solution of 10mM KCl in deionised ultrafiltered
water (MilliQUV plus,Millipore). Prior to all measurements, the
perfusion solution was re-filtered through a 0.2mm syringe filter
(Acrodisc syringe filters, Pall Corporation). Stem segments were
prepared and hydraulic conductivity was measured as
stated above. All stems were decorticated up to 5mm at each
end to allow for a proper seal during hydraulic conductivity
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measurements and flushed with 10mM KCl at 0.1MPa for
20min before spinning in the centrifuge. Hydraulic conductivity
was measured after spinning at successively more negative
pressures at the centre of rotation (0, –0.5, –1, –3, –5, –7 and
–9 MPa; 3min of rotation time for each pressure) and percent
loss of conductivity (PLC) was calculated as (100 (1 – Kresult

Kmax
–1), where Kresult refers to conductivity following each spin

and Kmax is the maximum conductivity (flushed) measured
before centrifugation. For comparisons between treatments, the
point at which PLC=50 and the mean cavitation pressure were
used. Mean cavitation pressure was calculated by plotting
vulnerability curves as the loss of hydraulic conductivity per
unit of xylem pressure change (compared with PLC, which
is plotted as the cumulative loss of conductance). The mean of
this distribution was calculated based on the midpoint of each
pressure change (Sperry and Ikeda 1997).

Needle loss resulting from HWA-infestation

HWA-induced needle loss was estimated by calculating the
relative needle biomass, which represents the ratio of branch
needle biomass to branch cross-sectional area (Långström et al.
2004). The total dry mass of all needles distal from the branch
excision point was correlated with the branch cross-sectional
area. There was no significant difference in mean branch
diameter between treatments (P> 0.5) and needles collected
for analyses of needle loss represented multiple years of
growth. Although the possible impacts of HWA-infestation on
branch extension were not evaluated in this study, an analysis of
needle density via image analysis (ImageJ Software, National
Institutes of Health) on 3-cm-long segments of current-year
shoots (i.e. needles formed from budbreak to the June sampling
date 2011) showed no difference in needle production between
treatments (P> 0.5). Based on this analysis of needle production,
differences in relative needle biomass between treatments are
assumed to be a result of feeding by HWA and induced needle
loss in prior growing seasons.

Wood anatomy and growth rate

From 30-cm branch segments collected in the field, a distal
portion of the branch segment used for hydraulic
measurements was collected and fixed in formalin : acetic
acid : ethyl alcohol (1 : 1 : 9) for anatomical measurements. The
base of each segment was mounted on a sliding microtome and
two 10-mm sections per branch were taken. Sections were placed
in 0.1% safranin O stain solution (filtered through a 0.2-mm
syringe filter) for 2min and rinsed in deionised ultrafiltered
water for 2min. Sections were then mounted on glass slides
with 50% glycerol to prevent dehydration. Analysis of cross-
sections was conducted using fluorescent microscopy at 200�
magnification. Samples were photographed in a series of four
radial files extending from the bark to the pith. In each sample,
one radial file free of compression wood was analysed for
tracheid dimensions by use of ImageJ Software (Jansen and
Choat 2011; Scholz et al. 2013); an average of 958 tracheids
per stem were measured. Average tracheid lumen area (At) was
calculated as the total lumen area in each image divided by the
total number of tracheids in each image. Tracheid diameter was
calculated to determine the hydraulically weighted mean

diameter (Dh) based on the calculation Dh =
P

d5 � P
d4,

where d is the diameter of a conduit (Sperry et al. 1994).
Based on the Hagen–Poiseuille law, the Dh weights tracheid
diameter with the estimated hydraulic conductance of the
conduits. Growth rate was calculated by dividing the cross-
sectional area of each branch by the number of growth rings
excluding rings that were formed before the start of the
experimental treatments, resulting in an average branch area
increment growth (expressed as mm2 year–1) after treatment
(Speer 2010).

Photosynthesis and stomatal conductance

Six HWA-infested trees and eight control trees were measured
for net photosynthetic rate and stomatal conductance on 16 June
2011 at 0800–1100 hours. Measurements were made on HWA-
free current-year needles from randomly chosen, sun-exposed,
upper canopy branches using a portable photosynthesis system
(Model LI-6400, LI-COR). Use of a Li-Cor Needle Chamber
(Model 6400–07, LI-COR) with a clear Propafilm (Innovia
Films Inc.) window chamber top allowed for measurements
under natural light with ambient air conditions (PAR,
1600mmolm–2 s–1; CO2, 371mmolmol–1; average temperature,
31�C). Threemeasurements per branchwere taken. A photograph
through the clear chamber top was taken of each set of needles
measured, which was used to calculate needle area via image
analysis (ImageJ Software, National Institutes of Health). The
net rate of photosynthesiswas adjustedon thebasis of needle area.
Needles shaded by the stem or other needles were not included in
the calculation of needle area. Therewas no significant difference
in needle overlap (i.e. shading) or needle area in the gas exchange
chamber between treatments (P > 0.5).

Leaf water potential
Leaf water potential was measured on 9 and 16 June 2011 with a
Scholander pressure-bomb (Scholander et al. 1965). At predawn
and at midday, two 10-cm-long current-growth shoots per tree
were collected, sealed in individual ziplock bags with a wet
paper towel and covered in a dark container. Samples were
immediately transported back to the laboratory for processing.
For each sample, the entire 10-cm shoot was placed inside the
pressure-bomb chamber for measurement.

Foliar chemical analysis

From branches removed for measurements of hydraulic
conductivity and vulnerability to cavitation, needles of mixed
age classes were collected and oven-dried at 55�C. Levels of
%N in addition to P, K, B, Fe, Na, Ca, Mg, Zn, Mn and Cu were
measured using the method of inductively-coupled plasma
atomic emission spectrometry performed by the University of
Massachusetts Soil and Plant Tissue Testing Laboratory,
Amherst, MA, USA.

Statistical analysis

Prior to all analyses, a Levene’s test for equality of variances
was run. Independent two-sample t-tests were used to compare
differences in means between HWA-infested and control
(HWA-free) trees. All analyses were performed with SPSS
statistical software (IBM Corporation).
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Results

Hydraulic conductivity and cavitation resistance

We found differences in xylem hydraulic conductivity but
not in vulnerability to cavitation. Specifically, there were no
differences in the point at which PLC= 50 (P > 0.1) or mean
cavitation pressure (P> 0.1) between the two treatments (Fig. 1).
However, we did find significant differences in native Ks and
LSC between HWA-infested and control trees (Fig. 2).
Specifically, native Ks (P=0.03) and native LSC (P< 0.001)
were higher in HWA-infested versus control trees. There were
no differences between native and flushed Ks, and between
native and flushed LSC within treatments (P> 0.1). There were
no significant correlations between stem age andKs or LSCwithin
treatments (P> 0.1). Between-treatment differences in LSC were
largely driven by the smaller leaf area distal to the measured
branch segments from the HWA-infested trees (Table 1).

Needle loss, wood anatomy and growth rates

HWA-infested trees had significantly lower relative needle
biomass (42.5� 8.1 g cm–2) than control trees (60.0� 2.7 g
cm–2), which we interpret as evidence of HWA-induced needle
loss (P< 0.05; Table 1). HWA-infested trees had larger At and
higher Dh than control trees (P < 0.05; Table 1). The treatments
did not differ in branch area increment growth rates (P = 0.34;
Table 1).

Photosynthesis and stomatal conductance

Net photosynthetic rate differed between treatments (P = 0.038;
Fig. 3a), with higher rates in HWA-infested than in control trees.
Although there was a trend for higher rates of stomatal
conductance in HWA trees than in control trees, there was no
significant difference between treatments (P = 0.155; Fig. 3b).

Leaf water potential

Measurements of leaf water potential at predawn and midday
showed no significant treatment differences (P= 0.219 and
P = 0.181, respectively). Mean predawn leaf water potentials
(� s.d.) for HWA-infested trees and control trees were 0.18
�0.03MPa and 0.16 �0.04MPa, respectively. Mean midday
leaf water potentials (� s.d.) for HWA-infested trees and
controls trees were 1.08 �0.1MPa and 1.13 �0.09MPa,
respectively. At midday water potentials of around –1.0MPa,
trees are not predicted to experience significant cavitation.
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Fig. 1. Treatment differences in the percent loss of conductivity (PLC)
under increasing pressure for T. canadensis. The data are fitted by least-
squares regression with a Weibull function. There are no treatment
differences in the point at which PLC= 50 (P> 0.1) or mean cavitation
pressure (P> 0.1). Values are the average PLC� s.e. (hemlock woolly
adelgid (HWA) n= 9; control n= 12).
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Fig. 2. Comparison of hydraulic conductivity in T. canadensis across
treatments with the hemlock woolly adelgid (HWA) and the control.
Values were adjusted for (a) xylem-specific conductivity (Ks) and for
(b) leaf-specific conductivity (LSC). Values are means� s.e. (HWA
n= 10; control n= 13). Different lowercase letters are significantly
different according to an independent two-sample t-test (P< 0.05).
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Foliar chemistry

An analysis of the total foliar chemistry of hemlock needles
found significant differences between treatments (Table 2).
Compared with control trees, HWA trees exhibited higher
levels of %N in addition to higher levels of P, K, B, Fe and
Na. There were no treatment differences in the foliar levels of
Ca, Mg, Zn, Mn or Cu.

Discussion

The goal of this study was to shed light on the physiological
processes by which HWA affects the health and vigour of young
hemlock trees. More specifically, we tested the hypothesis that
HWA infestation leads to an impairment in the water transport
capacity of the xylem either through alterations in xylem
anatomy or increased vulnerability to cavitation. Although we
found evidence of significant alterations in xylem anatomy, the
higherKs observed inHWA-infested plants in this study, coupled
with the lack of any impact on vulnerability to cavitation,
suggests that HWA-induced needle loss at the early stage of
infestation was not the result of impaired water supply. Instead,
both needle loss and higher Ks contributed to higher water
supply capacity on a per-leaf area basis (LSC). This did not,
however, translate into higher stomatal conductance or leaf
water potential, indicating that branch hydraulic conductivity
did not limit stomatal apertures in these plants.

A previous study (Domec et al. 2013) also found that HWA
infestation led to an increase in water supply capacity on a leaf
area basis (LSC). However, the increase in LSC was driven
entirely by needle loss; the hydraulic conductivity of the wood
(Ks) was lower in the infected plants. In contrast, in our study,
HWA infestation led to an increase in At and higherKs. Although
we do not know the reason for this difference, the fact that
the trees in this study were younger in age (~10 yr old and
~2m in height versus ~40 years old) and growing in an open
garden where resource availability is expected to be high may
be relevant. Additionally, differences in temperature and
evaporative demand between the two sites (North Carolina

versus Rhode Island) could also contribute to dissimilarity in
the impact of HWA on xylem structure.

One important component of hemlock’s response to
infestation appears to be the greater occurrence of false rings,
which are known to occur following both artificial and insect-
induced defoliation (Salleo et al. 2003; Thomas et al. 2006; Rossi
et al. 2009). On the same plants as in this study, Gonda-King
et al. (2012) calculated that HWA-infested trees have 50%
more false rings. Similarly, Domec et al. (2013) reported
abnormal wood production, including the presence of false
rings in HWA-infested eastern hemlock trees growing in North
Carolina. Favourable growing conditions such as adequate
light and minimum competition for resources from
neighbouring plants could have resulted in the observed
increases in At and Dh as xylogenesis resumes following
periods of stress and false ring formation (Wimmer et al.

Table 1. Treatment differences in Huber value (sapwood area divided
by leaf area), estimated needle loss, wood anatomy and growth rates of
T. Canadensis infected with hemlock woolly adelgid (HWA) and

uninfected controls
Means (� s.e.) in the same row with different lowercase letters are
significantly different (P� 0.05; HWA n= 10; control n= 12). RNB,
relative needle biomass (i.e. estimated needle loss calculated as branch
needle biomass divided by branch cross-sectional area); At, average
tracheid lumen area; Dh, hydraulically weighted mean diameter (HWA
n= 10; control n= 11); BAI, branch area increment growth rate (HWA

n= 10; control n= 13)

HWA Control

Huber value (10�4

cm2/cm2)
3.4� 10�4 ± 5.0� 10�5a 1.9� 10�4 ± 1.9� 10�5b

RNB (g cm–2) 42.6 ± 8.1a 60.0 ± 2.7b
At (mm2) 135.3 ± 11.1a 96.6 ± 10.2b
Dh (mm) 16.1 ± 0.6a 14.0 ± 0.7b
BAI (mm2 year–1) 8.2 ± 1.2a 7.5 ± 1.1a
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Fig. 3. Treatment differences in T. canadensis (a) net photosynthetic
rate and (b) stomatal conductance with values as means� s.e. (hemlock
woolly adelgid (HWA) n= 6; Control n= 8). Different lowercase letters
are significantly different according to an independent two-sample t-test
(P< 0.05).
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2000). Although there was no treatment-induced difference in
branch area increment growth, our findings are consistent with
Salleo et al. (2003), who showed that insect-induced defoliation
events increased false ring density, which in turn was associated
with the production of more wood per year with wider conduits
and a higher conductive area. Other studies on false ring
formation after artificial or insect-induced defoliation events
found no overall change in average tracheid lumen area
(Thomas et al. 2006; Rossi et al. 2009), providing further
support for false rings not necessarily leading to lower water
transport capacity.

We observed higher photosynthetic rates in trees
experiencing early stages of HWA infestation. As trees suffer
more chronic infestations of HWA, photosynthesis and
conductance rates have been shown to decline (Rubino et al.
2015). The higher rates of photosynthesis observed here
corresponds well with the higher foliar N content of these
plants and could have contributed to their sustained rate of
wood production. Previous work showed that the %N levels of
HWA-infested foliage were lower in the first year than in
noninfested trees (Miller-Pierce et al. 2010) but were higher in
chronically infested individuals (Stadler et al. 2005; Gómez
et al. 2012; Domec et al. 2013). One explanation for this
pattern is that HWA-induced increases in both the foliar %N
and photosynthetic rates could be a stress response used to
compensate for depleted photosynthate stores and loss of
foliage (Eyles et al. 2011), or changes in sink strength (Domec
et al. 2013). This is consistent with increased levels of both
proline, an amino acid associated with water stress, and
glutamine, a product of increased glutamine synthetase
activity, which have been observed in HWA-infested trees
(Rhodes et al. 1999; Miflin and Habash 2002; Gómez et al.
2012). We also found significantly higher levels of foliar P, K,
B, Fe and Na in trees subjected to HWA infestation, which
could be driven by the demand for ions such as P (involved in
protein synthesis), K (a key component of stomatal regulation
and ATP synthesis via photophosphorylation), Fe (an essential
element for chlorophyll development and function) and B

(involved in membrane integrity and function, particularly
facilitating transport of K for guard cell regulation) by higher
rates of photosynthetic activity (Marschner 1995).

Changes in foliar cations and leaf chemistry could impact the
health of hemlock trees in ways that we are only beginning to
understand. Gómez et al. (2012) proposed that the seasonal
feeding habits of HWA trigger intermittent stress events,
resulting in elevated foliar nutrient levels, which could, in
turn, make individual eastern hemlocks more palatable to
HWA. This theory is supported by a survey showing that
foliar chemistry (particularly increased N and K) was
correlated with the susceptibility of eastern hemlock to HWA
(Pontius et al. 2006). Recent work by Gonda-King et al. (2014)
also demonstrates a strong correlation between the physiology
of infested hemlocks and the life-stage of the HWA. They found
that high leaf N levels were only present during diapause
(summer months); after diapause (autumn months), infested
hemlocks exhibited decreased water potential and
photosynthesis. Lastly, Radville et al. (2011) found evidence
of a hypersensitive response by detecting elevated levels of
hydrogen peroxide in HWA-infested foliage. After also
detecting high levels of H2O2 in HWA-free needles growing
on infested trees, Radville et al. (2011) suggested that HWA
infestation results in a systemic defence response, providing
support for the hypothesis that HWA-induced mortality in
eastern hemlocks could be caused by hypersensitive response
in foliar tissue.

Our study suggests that changes in xylem properties may not
be responsible for the reduction in leaf area that results from
early HWA infestation. However, as trees are weakened as a
result of prolonged HWA infestation, impaired stem hydraulics
may develop as a secondary response. HWAs appear to impact
eastern hemlock in a variety of ways. For example, Nuckolls
et al. (2009) reported that fine root biomass of eastern hemlock
decreased following infestation with HWA, which could
indicate disruptions in whole-tree budgeting of nonstructural
carbohydrates. In fact, Soltis et al. (2015) found that HWA
infestation altered the nonstructural carbohydrate distributions,
resulting in higher starch storage in older branches than in new
needles. Regarding the biomechanical properties of the xylem,
recent work showed that HWA decreases the strength and
flexibility of branches proximal to the infestation site (Soltis
et al. 2014). Thus the correlation we observed between
increased hydraulic conductivity and tracheid lumen area
could come at a cost if larger tracheids compromise the
biomechanical integrity of the wood. In light of these and
previous findings, more work is needed to further understand
the complexity of stress responses in eastern hemlock in relation
to plant age, environmental conditions, the duration and
intensity of infestation, and life-stages of HWA.
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